М.В. ЗАГІРНЯК, В.Б. КЛЕПІКОВ, С.М. КОВБАСА В.М. МИХАЛЬСЬКИЙ, С.М. ПЕРЕСАДА, О.В. САДОВОЙ, І.А. ШАПОВАЛ

ЕНЕРГОЕФЕКТИВНІ ЕЛЕКТРОМЕХАНІЧНІ СИСТЕМИ ШИРОКОГО ТЕХНОЛОГІЧНОГО ПРИЗНАЧЕННЯ

Electrical Engineering. M.V. Zagirniak, V.B. Klepikov, S.M. Kovbasa, V.M. Mykhalskii, S.M. Peresada, O.V. Sadovoi, I.A. Shapoval

"Energy-efficient electromechnical systems of broad technology purpose" - Kyiv, Institute of Electrodynamics of the NAS of Ukraine, 2018. – 310 p. Circulation - 300 copies.

ISBN 978-966-02-8403-6

The monograph presents research results of the means for increasing energy efficiency of electromechanical systems of different technology purposes. Based on the development of vector control theory, a theoretical generalization and new solution of a recent scientific and practical problem of synthesis and analysis of electromechanical systems with vector-controlled electric drives, are obtained. A method of non-driving (without measuring mechanical coordinates) electromechanical vector control in systems with asynchronous motors is developed. The boundaries of a family zero-sequence functions existence of for problem submodulation of the output voltages of semiconductor

converters for electric drive when using a pulse-width modulation, are determined. A use of the signal spectrum of a power consumed by a three-phase motor for diagnosis of its defects is substantiated. A methodology of the structural and algorithmic synthesis of systems of optimal control of technological objects on the basis of a modified symmetry principle is considered. Theoretical bases of dynamics of a wide class of electromechanical systems with a nonlinear friction are developed. The results of experimental studies and introduction of energy-efficient electric drives are presented.

The monograph is intended for the specialists engaged in the development and research of electric drives, graduate students and students of relevant specialties.